Stoichiometric Constraints Do Not Limit Successful Invaders: Zebra Mussels in Swedish Lakes
نویسندگان
چکیده
BACKGROUND Elemental imbalances of carbon (C): nitrogen (N): phosphorus (P) ratios in food resources can constrain the growth of grazers owning to tight coupling between growth rate, RNA allocation and biomass P content in animals. Testing for stoichiometric constraints among invasive species is a novel challenge in invasion ecology to unravel how a successful invader tackles ecological barriers in novel ecosystems. METHODOLOGY/PRINCIPAL FINDINGS We examined the C:P and N:P ratios and the condition factor of a successful invader in lakes, the zebra mussel (Dreissena polymorpha), collected from two Swedish lakes. Concurrently, we analyzed the elemental composition of the food (seston) and tissue of the mussels in which nutrient composition of food and mussels varied over time. Zebra mussel condition factor was weakly related to the their own tissue N:P and C:P ratios, although the relation with the later ratio was not significant. Smaller mussels had relatively lower tissue N:P ratio and higher condition factor. There was no difference in C:P and N:P ratios between seston and mussels' tissues. Our results indicated that the variation in nutrient stoichiometry of zebra mussels can be explained by food quality and quantity. CONCLUSIONS/SIGNIFICANCE Our study suggests that fitness of invasive zebra mussels is not constrained by nutrient stoichiometry which is likely to be important for their proliferation in novel ecosystems. The lack of imbalance in C:P and N:P ratios between seston and mussels along with high tissue C:P ratio of the mussel allow them to tolerate potential P limitation and maintain high growth rate. Moreover, zebra mussels are able to change their tissue C:P and N:P ratios in response to the variation in elemental composition of their food. This can also help them to bypass potential nutrient stoichiometric constraints. Our finding is an important step towards understanding the mechanisms contributing to the success of exotic species from stoichiometric principles.
منابع مشابه
Competitive Replacement of Invasive Congeners May Relax Impact on Native Species: Interactions among Zebra, Quagga, and Native Unionid Mussels
Determining when and where the ecological impacts of invasive species will be most detrimental and whether the effects of multiple invaders will be superadditive, or subadditive, is critical for developing global management priorities to protect native species in advance of future invasions. Over the past century, the decline of freshwater bivalves of the family Unionidae has been greatly accel...
متن کاملMolecular ecology of zebra mussel invasions.
The invasion of the zebra mussel, Dreissena polymorpha, into North American waters has resulted in profound ecological disturbances and large monetary losses. This study examined the invasion history and patterns of genetic diversity among endemic and invading populations of zebra mussels using DNA sequences from the mitochondrial cytochrome oxidase I (COI) gene. Patterns of haplotype frequency...
متن کاملModels to Predict Potential Occurrence and Density of the Zebra Mussel, Dreissena polymorpha
Limnological features of different lakes may limit the density of, or even completely restrict, populations of the European zebra mussel, Dreissena polymorpha. We developed statistical models to predict the occurrence (presence or absence) and density (number per square metre) of Dreissena in lakes, based on multivariate correlations between the density of Dreissena populations and the limnolog...
متن کاملPhylogeography and systematics of zebra mussels and related species.
The genus Dreissena includes two widespread and aggressive aquatic invaders, the zebra mussel, Dreissena polymorpha, and the quagga mussel, Dreissena bugensis. This genus evolved in the Ponto-Caspian Sea basin, characterized by dynamic instability over multiple timescales and a unique evolutionary environment that may predispose to invasiveness. The objectives of this study were to gain insight...
متن کاملEffects of the zebra mussel, an exotic freshwater species, on seston stoichiometry
We examined the effect of the zebra mussel, Dreissena polymorpha, an exotic species, on seston stoichiometry by conducting laboratory experiments in which we varied nutrient composition of seston and mussels over time. Zebra mussels altered the stoichiometry of seston through removal of particulate organic nutrients and changed the stoichiometry of the dissolved nutrient pool through nutrient e...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- PLoS ONE
دوره 4 شماره
صفحات -
تاریخ انتشار 2009